

Knox Grammar School

202	21

Name: _____

Trial Higher School Certificate Examination

Teacher:	

Year 12 Extension 2 Mathematics

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using blue or black pen only
- Board approved calculators may be used
- The official NESA Reference Sheet is provided
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.

Teachers: Mr Bradford (Examiner) Ms Yun Mr Vuletich

Section I ~ Pages 3-6

- 10 marks
- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II ~ Pages 7-15

- 90 marks
- Attempt Questions 11 16
- Allow about 2 hours 45 minutes for this section

Write your name, your Teacher's Name and your Student Number on the front cover of each answer booklet

Number of Students in Course: 31

This examination is based on the CSSA 2021 Extension 2 paper and modified in accordance with the CSSA directives: Examinations can be compressed by removing some questions to shorten the examination. Schools should only upload/scan the relevant question. The CSSA Trial HSC Examination Timetable is to be adhered to; this includes the security period. **BLANK PAGE**

Section I

10 marks Attempt questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

- Consider the statement: "If an animal is a bird, then it can fly or swim." What is the contrapositive statement?
 - (A) If an animal cannot fly or cannot swim, then it is a bird.
 - (B) If an animal cannot fly or cannot swim, then it is not a bird.
 - (C) If an animal cannot fly and cannot swim, then it is a bird.
 - (D) If an animal cannot fly and cannot swim, then it is not a bird.
- 2. Recall that ${}^{n}C_{r}$ is defined for non-negative integers *r* and *n* where $0 \le r \le n$.

Consider the equation $\frac{100 {}^{x}C_{100}}{{}^{x-1}C_{99}} = \frac{1}{x^{99}}$. How many real solutions in x does this equation possess?

- (A) 0
- (B) 1
- (C) 2
- (D) infinite
- 3. What is the angle between the vectors u = 2i j + k and v = i + 3j + 2k, to the nearest degree?
 - (A) 77°
 - (B) 83°
 - (C) 84°
 - (D) 96°

4. A(1,2,2), B(3,-12,4), C(1,2,0) and D(3,-12,0) are four position vectors. What is the vector projection of \overrightarrow{AB} onto \overrightarrow{CD} ?

- (A) 2i 14j + 2k
- (B) 2i 14j + 4k
- (C) 2i 14j
- (D) -2i + 14j
- 5. For all non-zero integers x and y, if x > y then $\frac{1}{x} < \frac{1}{y}$. What is a counter-example to the above statement?
 - (A) x = 2, y = -1
 - (B) x = 0, y = 0
 - (C) x = 4, y = 3
 - (D) x = -2, y = 1
- 6. A particle is moving in simple harmonic motion with displacement x metres. Its acceleration \ddot{x} is given by $\ddot{x} = -4x + 3$. What are the centre and period of motion?
 - (A) centre of motion = 3, period = $\frac{\pi}{2}$
 - (B) centre of motion = -3, period = π
 - (C) centre of motion $=\frac{3}{4}$, period $= \pi$

(D) centre of motion =
$$\frac{3}{4}$$
, period = $\frac{\pi}{2}$

- 7. It is given that z = 2 + i is a root of $z^3 + az^2 bz + 5 = 0$, where *a* and *b* are real numbers. What is the value of *a* ?
 - (A) –5
 - (B) –3
 - (C) 3
 - (D) 5
- 8. Which integral has the smallest value?

(A)
$$\int_{0}^{\frac{\pi}{4}} (\sin x)^{2} dx$$

(B)
$$\int_{0}^{\frac{\pi}{4}} (\cos x)^{2} dx$$

(C)
$$\int_{0}^{\frac{\pi}{4}} \sin x \cos x dx$$

(D)
$$\int_{0}^{\frac{\pi}{4}} \sin x \tan x dx$$

9. A ball of mass m kg is observed rolling up a frictionless ramp, inclined at an angle of 30° to the horizontal. When first observed, the ball's velocity is 5 m/s.

Through what further distance will the ball roll up the ramp?

- (A) $\sqrt{3}$ metres
- (B) $m\sqrt{3}$ metres
- (C) 2.5 metres
- (D) 2.5m metres

10. What value of *a* will minimise the integral $\int_{0}^{1} (x^{2} - a)^{2} dx$?

(A) $a = \frac{1}{2}$

(B)
$$a = \frac{1}{\sqrt{2}}$$

(C)
$$a = \frac{4}{45}$$

(D)
$$a = \frac{1}{3}$$

End of Section I

Section II

90 marks Attempt questions 11 – 16 Allow about 2 hours 45 minutes for this section

Answer each question in a separate writing booklet.

In Questions 11 – 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11	(15 marks)	Use a SEPARATE writing booklet	Marks
(a) Given	w = 2 + 5i and	z = 4 - 3i, evaluate	
(i) w	$v + \overline{z}$		2
(ii) (v	$(v+\overline{z})(\overline{w}+z)$		2
(b) Find th	e square roots o	of 15–8 <i>i</i> .	3

(c) Use the substitution
$$t = \tan \frac{\theta}{2}$$
 to evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{1 + \sin \theta + \cos \theta}$.

(d) (i) Write down all the roots of $z^7 - 1 = 0$ in the form $re^{i\theta}$ where r > 0 and $-\pi < \theta \le \pi$. 2

(ii) Hence, prove that
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2}$$
 2

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet

Marks

(a) Use integration by parts to find
$$\int x 3^x dx$$
. 3

(b) By writing
$$\frac{8-2x}{(1+x)(4+x^2)}$$
 in the form $\frac{A}{1+x} + \frac{Bx+C}{4+x^2}$, evaluate $\int_{0}^{4} \frac{8-2x}{(1+x)(4+x^2)} dx$. 4

- (c) On the same Argand diagram, draw a neat sketch of |z-4-4i|=2 and $\arg(z)=\frac{\pi}{4}$. 4 Hence write down all the values of z which satisfy simultaneously |z-4-4i|=2 and $\arg(z)=\frac{\pi}{4}$.
- (d) Find the scalar projection of the vector $\underline{u} = \underline{i} 2\underline{j} + \underline{k}$ onto $\underline{v} = 4\underline{i} 4\underline{j} + 7\underline{k}$. 2

(e) Given
$$\underline{a} = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$$
 and $\underline{b} = \begin{pmatrix} -2 \\ 1 \\ -4 \end{pmatrix}$, and $\underline{a} - \underline{b} + 2\underline{c} = 0$, find \underline{c} . 2

End of Question 12

		intuition and intuition a firm	1150 2021
Question 1	3 (15 marks) U	Jse a SEPARATE writing booklet	Marks
(a) (i)	Suppose <i>a</i> and <i>b</i> are p sum of <i>a</i> and <i>b</i> is odd	positive integers, where a is even and b is odd. Show that the 1.	. 1
Fo	positive integers <i>m</i> a	and <i>n</i> , consider the propositions:	
p:	m+n is even		
q : 1	<i>n</i> and <i>n</i> are both ever	1	
r:	m and n are both odd		
(ii)	Write in symbolic fo	orm the compound proposition P where	1
	<i>P</i> : If $m+n$ is even,	then m and n are both even or m and n are both odd.	
	You may use \vee for '	or' and \wedge for 'and' where appropriate.	
(iii)	Write both in symbols proposition <i>P</i> in particular	olic form and as an English sentence, the contrapositive to th t (ii).	e 2
(iv)	Hence explain why	the proposition <i>P</i> is true.	1

(b) If x and y are positive integers with x > y, prove that $6(x+y)^2 - 2(x-y)^2$ is divisible **1** by four.

(c) Let
$$I_1 = \int_0^{\pi} \frac{x \sin x dx}{1 + \cos^2 x}$$
 and $I_2 = \int_0^{\pi} \frac{(\pi - x) \sin x dx}{1 + \cos^2 x}$.

- (i) Using the substitution $u = \pi x$ show that $I_1 = I_2$.
- (ii) Hence, or otherwise, evaluate I_1 .

Question 13 continues on page 10

2

2

2

Question 13 (continued)

- (d) A particle is travelling in a straight line. Its displacement, x cm, from O at a given time t seconds after the start of its motion is given by $x = 3 + \sin^2 t$.
 - (i) Prove that the particle is undergoing simple harmonic motion.
 (ii) Find the period of the motion.
 1
 - (iii) Find the total distance travelled by the particle in the first π seconds.

End of Question 13

Marks

2

Question 14 (15 marks) Use a SEPARATE writing booklet

- (a) Prove $\log_3 7$ is irrational.
- (b) The scalar product of $\underline{i} 2\lambda j \underline{k}$, and the sum of $\underline{i} \lambda \underline{k}$ and $\lambda \underline{i} + 2j \underline{k}$, is six. Find λ . **2**
- (c) Prove by mathematical induction $(2n)! < (n!)^2 \times 4^{n-1}$ for all positive integers $n \ge 5$.
- (d) Let $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$ and $\overrightarrow{OC} = 3\underline{a} + 2\underline{b}$.

(i) Prove that if
$$\overrightarrow{OD} = \frac{1}{5}\overrightarrow{OC}$$
 then D lies on AB. 2

- (ii) Is the point *D* closer to point *A* or point *B*? Justify your answer. 1
- (e) (i) Given $z = \cos \theta + i \sin \theta$, prove that $z^n \frac{1}{z^n} = 2i \sin n\theta$, where $n \in \mathbb{Z}$. 1
 - (ii) Hence, by considering the expansion of $\left(z \frac{1}{z}\right)^5$, find the values of *a*, *b* and *c* **3** such that $\sin^5 \theta = a \sin 5\theta + b \sin 3\theta + c \sin \theta$.

End of Question 14

Question 15 Use a SEPARATE writing booklet (15 marks)

Marks

(a)

In ΔLMN , let $\overrightarrow{LM} = a$ and $\overrightarrow{MN} = b$.

By finding an expression for the side length LN in terms of the vectors \underline{a} and \underline{b} , or

otherwise, prove that
$$\left| \overrightarrow{LN} \right|^2 = \left| \overrightarrow{LM} \right|^2 + \left| \overrightarrow{MN} \right|^2$$
.

(b) By evaluating the integral, show that

$$\int x^2 \sqrt{1-x^2} dx = \frac{\sin^{-1}(x) + \sqrt{1-x^2}(2x^3 - x)}{8} + C$$
3

(c) It is given that
$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$
 for $k \in \mathbb{N}$.

(i) Prove that
$$\frac{1}{(k+1)^2} < \frac{1}{k(k+1)}$$
. 1

(ii) If $x_1, x_2, x_3, ..., x_n$ are positive integers, not necessarily consecutive, such that

$$1 < x_1 < x_2 < x_3 < \dots < x_n$$
, prove that $\frac{1}{x_1^2} + \frac{1}{x_2^2} + \frac{1}{x_3^2} + \dots + \frac{1}{x_{n-1}^2} < 1$.

Question 15 continues on page 13

3

3

2

Question 15 (continued)

- (d) A particle of mass *m* kg is moving vertically downwards in a medium which exerts a resistive force equal to mkv^2 , where *v* is the particle's speed and k > 0 is a positive constant. The particle is released from rest at *O* and its terminal velocity is *U*.
 - By applying Newton's 2nd Law, show that the distance it has fallen below O is given by:

$$x = \frac{1}{2k} \ln \left| \frac{g}{g - kv^2} \right|.$$

(ii) Prove that the time taken, *T*, for the particle to fall from *O* to when its velocity is half of its terminal velocity, *U*, is given by:

$$T = \frac{U}{2g} \ln 3.$$

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet

5

3

(a) An aircraft flying horizontally at u m/s delivers an emergency medical supply package that hits the ground 4000 m away, measured horizontally. The package experiences an air resistance of 0.1v where v is the velocity at time t and g is the acceleration due to gravity.

The package hits the ground at an angle of 45° to the horizontal.

The horizontal and vertical components of acceleration are given by the differential equations $\ddot{x} = -0.1\dot{x}$ and $\ddot{y} = -g - 0.1\dot{y}$ respectively.

(i) By solving these differential equations, show that t seconds after release, the position vector, r(t), is given by:

$$\underline{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 10u(1 - e^{-0.1t}) \\ 100g(1 - e^{-0.1t}) - 10gt \end{pmatrix}$$

(ii) Using $g = 10 \text{ m/s}^2$, find the time when the package hits the ground. Give your answer correct to 1 decimal place.

Question 16 continues on page 15

Question 16 (continued)

(b) The lengths of the sides of a right triangle are *a*, *b* and *c*, where *c* is the length of the 2 hypotenuse. Prove the Pythagorean Inequality Theorem: $a^3 + b^3 < c^3$.

(c) (i) Given that
$$I_{2n+1} = \int_{0}^{1} x^{2n+1} e^{x^2} dx$$
 where *n* is a positive integer,
prove that $I_{2n+1} = \frac{e}{2} - nI_{2n-1}$.
(ii) Hence, or otherwise, prove that $2\int_{0}^{1} x^{2n-1} (1+x^2) e^{x^2} dx \le e$ for $n \in \mathbb{N}$.
3

End of Paper

l of 22

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Suggested Solution (s) SECTION I 1. Let $p,q, & r$ be the statements p: An animal can fly r: An animal can fly r: An animal can swim The compound statement in symbolic form is $p \rightarrow (q, vr)$ Its contrapositive is: $\sim (q, vr) \rightarrow \sim p$ $\Rightarrow \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad \qquad \sim q \wedge \sim r \rightarrow \sim p$ $\Rightarrow \qquad \qquad$	Comments 1. D. 6. C 2. A. 7. B 3. C. 8. A 4. C. 9. C 5. A 10. D De Morganis Laws	Suggested Solution (s) Solutions given by $\chi = dis \left(\frac{2k\pi}{100}\right)$ Real solins correspond to $k=0$ $k=50$ only, that is, $\chi = [8, 2=-1]$. However n_{cr} is only defined for $n \ge r$; then re , $\chi \ge 100$; $\chi \in NN$. So the original equation has no eal Aduitions. $\therefore (A)$ 3. If θ is the angle between $M & \chi$, then $\theta = \cos^{-1}\left(\frac{U \cdot \chi}{ M \chi }\right)$ $= \cos^{-1}\left(\frac{1}{\sqrt{6} \cdot \sqrt{14}}\right)$ or $\cos^{-1}\left(\frac{1}{\sqrt{844}}\right)$ $= 83.736 \approx 84^{\circ}$ $\therefore (c)$ $4 \cdot AB = (2, -14, 2) \& cD = (2, -14, 0)$ $roj_{cD} = \frac{198}{CD} \cdot CD = (2, -14, 0)$ $roj_{cD} = \frac{198}{198} (2, -14, 0)$ or $2i - 14j$ $5. 2 > -1 \longrightarrow \frac{1}{2} < -1$ is false with $2, -1 \in \mathbb{Z} \setminus \{0\}$. Here $p: 2 > 1 \& q: \frac{1}{2} < -1$ The truth value of p is true or $1&He truth value of p is true or 1&He truth value of p is false or 0.Consequently, the truth value ofSo(A)8: F F \implies implication is true righta implication is truerighta implication is true$	Comments K=0,1,,99
		D: FT => implication is true	

2 of 22

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
biggener solution (s) $\begin{aligned} \dot{x} &= -4 \left(x - \frac{3}{4}\right) \text{ or } \\ &= -(2)^2 \left(x - \frac{3}{4}\right) \\ \therefore & x_o = \frac{3}{4} \qquad \therefore (c) \\ & x = 2\pi \frac{1}{2} \text{ or } \pi \end{aligned} $ $\begin{aligned} & 7 \qquad \text{Product of roots = -5} \\ & \text{liven } 2 + i \text{is a root } , \text{then } 2 - i \\ & \text{is a lis a root as the polynomial } \\ & \text{equation satisfies the criteria of the constructer Root 1 HeoREM. If the remaining root is 0, then (2+i)(2-i) \cdot d = -5 \\ &\Rightarrow 5d = -5 \text{ or } d = -1. \\ & \text{so roots and } 2 \pm i, -1 & \text{sum of root } , Zd_i = -a \\ &= &= (2+i) + (2-i) + (-i) = -a \\ &= &= (2+i) + (2-i) + (-i) = -a \\ &= &= (2+i) + (2-i) + (-i) = -a \\ &= &= (2+i) + (2-i) + (-i) = -a \\ &= &= (2+i) + (2-i) + (-i) = -a \\ &= &= (2+i) + (2-i) + (-i) = -a \\ &= &= 2^2 - 2ke(a) \cdot 2 + a & \text{for } a = 2ti \\ & \text{Noting } (2-a)(2-a) = 2^2 - (ata)2 + aa \\ &= & & & & & & & & & & & & & & & & & &$	OF type $\vec{x} = -n^2(\vec{x} - \vec{x}_0)$ $\tau = 2n$ $\vec{x}_0 = centre$ of motion Relationships between rootse coefficients Relationships between rootse coefficients Conjugote Root theorem Fautor theorem $\vec{x}_0 = -a$	Suggested solution (3) 8. For $x \in [0, \frac{\pi}{4}]$ all integrands are non-negative with each equally zero only when $x=0$: So all integrals, when evaluated are positive. Now $\sin x = \cos x$ on $[0, \frac{\pi}{4}]$ with equality only achieved at $z=\pi 7_4$. $\therefore \sin^2 x = \cos^2 x \cdots (\pi)$ $\sin x$. $\sin x = \cos^2 x \cdots (\pi)$ $\sin x$. $\sin x = \cos x \cdot \sin x$ $\Rightarrow \sin^2 x = \sin x \cdot \cos x \cdots (\pi)$ Finally $\frac{1}{2} \le \cos x = 1$ on $[0, \frac{\pi}{4}]$ So, $1 \le \frac{1}{\cos 2} \le \sqrt{2}$ $\therefore \sin x \cdot \tan x = \frac{\sin^2 x}{\cos x}$ $\lim_{x \to \infty} x \sin x = \frac{\sin^2 x}{\cos x}$ U pon multiplying the inequality $1 \le \frac{1}{\cos x} \le \sin x \cdot \tan x = \sqrt{2}\cos^2 x$. From inequalities $(\pi), (\pi) & (\pi)$, we conclude that $\int_{x}^{\pi} y_{\pi}$ $\int_{x} \sin^2 x \sin x - \tan x = \sqrt{2}\cos^2 x$. From inequalities $(\pi), (\pi) & (\pi)$, $\int_{x} \sin^2 x \sin x - \tan x = \sqrt{2}\cos^2 x$. From inequalities $(\pi), (\pi) = \sqrt{2}\cos$	as $\sin \frac{\pi}{20}$ on $\left[0, \frac{\pi}{4}\right]$ $\pi \in \left[0, \frac{\pi}{4}\right]$
$= -a \Rightarrow a = 3.5_{0}(B)$			

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
9. $y = \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{$	$ \begin{array}{l} \theta = 30^{\circ}, \\ g = 10 \text{ m} s^{2} \\ \dot{\chi} = 0 \end{array} $	10. $\int_{0}^{1} (x^{2}-a)^{2} dx$ $= \int_{0}^{1} (x^{4}-2ax^{2}+a^{2}) dx$ $= \left[\frac{x^{5}}{5} - \frac{2a}{3}x^{3}+a^{2}x\right]_{0}^{1}$ $= a^{2} - \frac{2a}{3} + \frac{1}{5}$ $= (a - \frac{1}{3})^{2} + \frac{1}{5} - \frac{1}{9} oR$ $(a - \frac{1}{3})^{2} + \frac{4}{45}$ This algebraic expression is minimized when $a = \frac{1}{3}$. Alternative: Let $b = a^{2} - \frac{2a}{3} + \frac{1}{5}$ b is minimized when $\frac{db}{da} = 0$. This implies $2a - \frac{2}{3} = 0$ $\Rightarrow a = \frac{1}{3}$. $\therefore (D)$	

3 of 22

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
All SECTION I		(c) $\pm = \tan \frac{\theta}{2}$, then $d\theta = \frac{2dt}{14^2}$	
(a) (i) $\omega = 2+5i$; $2 = 4-3i$		ALTERNATIVE: at = 1 sec 2/2	0 1)
$\frac{1}{2} w + \overline{3} = (2+5i) + (4+3i) $	√ process	$d\theta = \frac{1}{2}(1+\frac{1}{2}\theta_{2})$	rythagorean
= [6+51]	1 answer	$dt = \frac{1}{2}(111^2)$	Identity
$= \sqrt{6^2 + 8^2}$ or 10		ab 2 Chit	V correction
(a) Noting $\overline{\omega} + \overline{3} = \overline{\omega} + \overline{3}$	Properties	$\Rightarrow \frac{d\theta}{dt} = \frac{2}{1+t^2}$ or equivalently,	arlieren
$= \overline{\omega} + 3$	Conjugate	$d\theta = \frac{2dt}{2}$	
Then $L\omega + \overline{3}(\omega + 3) = (\omega + \overline{3})(\overline{\omega} + \overline{3})$	J	$\int dh \rho_{10} \left(A = \rho_{10} + = 0 \right)$	
$= \omega + \overline{z} ^2$	33 = 1312	0==, t=1	Look k
$= 10^{2} \text{ or } 100$	V process	$\sin \theta = \frac{2t}{1+t^2} \& \cos \theta = \frac{1-t^2}{1+t^2}$	() mary
ALTERNATIVE: $(\omega + \overline{2})(\omega + 2) = (6 + 8i)(6 - 8i)$	1 answer	: integral decomed:	/
$\int ((u + j)^{-} (v + v) (v + v))$	2	$p = \frac{2}{(1+t^2)} dt$	
= 6 + 8 or 100	-8i=8	$1 + \frac{2t}{(1+t^2)} + \frac{(1-t^2)}{(1+t^2)}$	
filteres of (21.5) ²		c 2 dt c dt	liman los correct.
(15-81.1) (19-81) 2 - 2 - 1-7 - 1		$= \int_{0}^{1} \frac{2+2t}{2+2t} \int_{0}^{1} \frac{1+t}{2}$	Integrand
$\Rightarrow x - y = 15 c apon equativoxy = -4 real $\phi imaximum.$	V Simutan. eguation	= h_{1+t} or h_2	Imark for correct ans.
parts		a) (i) Roots are given by:	0-7
By inspection 2===4& y===1	1 correct	$2 = C P^{i} \left(\frac{O + 2k_{\text{T}}}{r} \right); k = 0, 1, 2,, 6$	r = 1
Hence square roots are 4-i &	1 answers	OK i(2kt)	$\theta = Arg(1)$
-4+i, i.e., ± (4-i)		$= e^{i} (\frac{1}{7}) = i (-\frac{1}{7})$	-O progress
ALTERNATIVE: Substitute y = - 4		$i\left(\frac{2\pi}{2}\right)$ 5 $i\left(\frac{12\pi}{2}\right)$ $i/-2\pi$	71
$into x^2 - y^2 = 15$		i(4) 3= e (1)= e 7)	$\sqrt{}$
$\therefore x^2 - \frac{16}{x^2} = 15$		$\partial_{L} = \mathcal{E}$ $i\left(\underline{\mathbf{GT}}\right)$	for correct
=> $x^{4} - 15x^{2} - 16 = 0$	8 byr ²	$e_{3} = e_{1}(B_{\rm TT}) i(-b_{\rm TT})$	with principal
$\Rightarrow (\chi^2 - 16)(\chi^2 + 1) = 0$,	$3_4 = e^{(7)} = e^{(7)}$	arguments
=7 $\chi = \pm 4$ only; $\chi \in \mathbb{R}$ where upon $y = \mp 1$ respectively	J		

4 of 22

5 of 22

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Suggested Solution (s) Suggested Solution (s) $\sum di = 0$ $\sum di = 0$ $i(2\pi) + e^{i(2\pi)} + e^{i(4\pi)} + e^{i(4\pi)}$ $i(4\pi) + e^{i(4\pi)} + e^{i(4\pi)} + e^{i(4\pi)}$ $e^{i(4\pi)} + e^{i(4\pi)} = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(4\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(4\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(4\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(4\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(4\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(4\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(4\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(4\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(4\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(4\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(4\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(5\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(5\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(5\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2us(2\pi) + 2us(5\pi) = 0$ $\Rightarrow 1 + 2u$	Comments Relationships between roots and coefficients i0 -i0 e + e = 2 cor 0 V process ALTEENATIVE STRATEGIES AVAILABLE - SEE SUPPLEMENT Integration by Parts V attempting touse IP V substantia progress V/ correct solution	Suggested Solution (s) $ \begin{array}{c} \therefore \int_{0}^{4} \frac{8 \cdot 2x}{(1+\pi)(2(4+\pi^{2}))} \\ = \int_{0}^{4} \left(\frac{2}{1+\pi} - \frac{2x}{4+\pi^{2}}\right) d\pi \\ = 2 \ln 1+\pi - \ln (4+\pi^{2}) _{0}^{4} \\ = 2 \ln (5) - \ln (20) + \ln (4) \\ = 2 \ln (5) - \ln (4) - \ln (5) + \ln (4) \\ = \ln (5) \\ \begin{array}{c} (c) \\ \end{array} \\ = \ln (5) \\ \begin{array}{c} (c) \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Comments V correct integration In (a,b) = In(a) + In(b) V correct enswer V correct skaleh of eircle V correct skaleh of ray &cuiDinh origin V for simultaneous 25 Em
$a > 0 & a \neq 1.$ (b) $\frac{g-2z}{(1+\chi)(4+\chi^2)} = \frac{A}{1+\chi} + \frac{B\chi+C}{4+\chi^2}$ $\Rightarrow 8-2\chi = A(4+\chi^2) + (B\chi+C)(1+\chi)$ When $\chi = -1$: $10 = 5A \Rightarrow A = 2.$ Equating coefficients of χ^2 : $D = A + B \Rightarrow B = -2$ Equating constants: $g = 4A + C \Rightarrow C = 0$	V for at most two correct values W for all three correct values	Solving simultaneously, $2(2-4)^2 = 4$ $\Rightarrow x = 4 \pm \sqrt{2}$ $\Rightarrow y = 4 \pm \sqrt{2}$ Hence $z = (4\pm\sqrt{2}) \pm i(4\pm\sqrt{2})$ or $z = (4\pm\sqrt{2}, 4\pm\sqrt{2})$	V for correct answers

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Suggester boundon (s) Scalar Projection of 4 onto X is given by $\frac{\chi \cdot \chi}{ \chi }$ where $\chi \cdot \chi = 4 + 8 + 7 \text{ or } 19^{\circ} g$ $ \chi = \sqrt{4^{2} + (-4)^{2} + 7^{2}} \text{ or } 9^{\circ}$ \therefore scalar projection = $\frac{19}{9}$ (a) $\begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} - \begin{pmatrix} -2 \\ 1 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} \chi \\ \gamma \\ 2 \\ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\Rightarrow \begin{cases} 2\chi + 1 = 0 \\ 2\gamma + 2 = 0 \Rightarrow \chi = -\frac{1}{2}, \\ 2\chi + 8 = 0 \\ \gamma = -1 & g \\ 2\chi + 8 = 0 \\ \gamma = -1 & g \\ 3 = -4. \end{cases}$ $\therefore c = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{4} \end{pmatrix} = \frac{1}{3} = -4.$ $\therefore c = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{4} \end{pmatrix} = 2k_{1}; k \in \mathbb{N}, $ Austion 13 (a) (i) Let $a = 2k_{1}; k \in \mathbb{N}, $ Then $a + b = 2k_{1} + (2k_{2}+1) = 2(k_{1}+k_{2}) + 1 = 2(k_{$	V for correct dot product V correct answer $c = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$ V for correct solution V one careless error orly appearing in solution V for process Positive integers are clused under addition	We have $p \Rightarrow (q, vr) \&$ its contrapositive is:- $\sim (q, vr) \Rightarrow vp$ $\Rightarrow vq \wedge vr \Rightarrow vp$ If m and n are Not both even AND if mand n are Not both odd, then m+n is Not even AND if mand n is even and the other is odd, then m+n is ODD. This result was proven in part(i) and as an implication & its contrapositive are logically equivalent, proposition P is true. $P = 6x^2 + 12xy + 6y^2 - 2x + 4xy + 4y^2$ $= 4x^2 + 16xy + 4y^2$ $= 4x^2 + 16x^2 + 4xy + 4y^2$ $= 4x^2 + 16x^2 + 4xy + 4y^2$ $= 4x^2 + 16x^2 + 4x^2 + 4x^2$ $= 4x^2 + 4x^2 + 4x^2 + 4x^2$ $= 4x^2 + 4x^2 + 4x^2 + 4x^2 + 4x^2$ $= 4x^2 + 4x^2 + 4x^2 + 4x^2 + 4x^2$ $= 4x^2 + 4x^2 + 4x^2 + 4x^2 + 4x^2$ $= 4x^2 + 4x^$	V = or V = or V = and V contraposition due Monzanis Laws V for contraposition English jom V for logicel equivalence mandatory V for proof Positive integers closeel under & onco @

6 of 22

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$\begin{array}{l} \boxed{\begin{array}{c} \underline{\alpha} 13 (\underline{\alpha}) (\underline{\alpha}) \\ For I_{1} = \int_{0}^{T} \frac{\pi \sin n}{1 + \cos^{2} \pi} d\pi \\ \frac{\pi \sin n}{1 + \cos^{2} (\pi - u)} \\ \frac{\pi \cos^{2} \pi}{1 + \cos^{2} (\pi - u)} d\mu \\ \frac{\pi \cos^{2} \pi}{1 + \cos^{2} n} \\ \frac{\pi \cos^{2} \pi}{1 + \cos^{2} n} \\ \end{array}}$	$ \begin{array}{c} $	(a) (i) Required to show that $\vec{x} = -n^2(x - x_0)$ (iven $x = 3 + \sin^2 t$ $\vec{x} = 2 \sinh t \cdot \cot t$ (chain rule) $\vec{x} = 2 \sinh t \cdot \cot t$ (chain rule) $\vec{x} = 2 \sinh t \cdot \cot t$ $(2 \sinh t) + 2 \cosh t \cdot \cot t$ $= -2 \sinh^2 t + 2 \cos^2 t$ $= 2(1 - \sin^2 t) - 2 \sin^2 t$ $= 2 - 4 \sin^2 t$	n = angular frequency; x = centre of motion Product rule
$= I_2 = \int_0^\infty \frac{(\pi - \chi) \cdot \sin \chi d\mu}{1 + \cos^2 \chi}$	dummy Variable	$x y_{m} t = x - 3$ $\therefore \ddot{x} = 2 - 4 (x - 3)$ = 14 - 4x $= -4 (x - \frac{14}{4})$	W for process
$(u) \underline{1}_{1} + \underline{1}_{2} = n \int_{0}^{\infty} \frac{3307 n}{1 + 100^{2} n} chn$ $= -\pi \int_{0}^{\infty} \frac{-\sin x}{1 + 100^{2} n} dn$ $= -\pi \left[\frac{-\sin x}{1 + 100^{2} n} \right]_{0}^{\pi}$	Formally, integration by substitution with u= cont -n [_clu 1+u ²	$\dot{\chi} = -(2)^{2} (\chi - \frac{7}{2})$ ALTERNATIVE: $\chi = 3 + \sin^{2} t$ $= 3 + \frac{1}{2} (1 - \cos 2t)$ $= \frac{7}{2} - \frac{1}{2} \cos 2t$	
$= -\pi \left[\tan^{2}(-1) - \tan^{2}(1) \right]$ $= -\pi \left[-2 \tan^{2}(1) \right]$ $= 2\pi \cdot \pi$ $= 2\pi \cdot \pi$ $= \sqrt{\sqrt{-for}}$ or $\pi^{2} \qquad \text{process}$	$\pi \int \frac{1}{1+u^2}$ $= 2\pi \int \frac{du}{1+u^2}$ $= \pi \int \frac{du}{1+u^2}$ $= \pi \int \frac{du}{1+u^2}$	=7 $\dot{z} = \sin 2t$ => $\dot{z} = 2\cos 2t$ & $\cos 2t = 7 - 2x$ from $x = \frac{7}{2} - \frac{1}{2}\cos 2t$ $\therefore \ddot{z} = 2(7 - 2x)$ $= -(2)^{2}(3 - \frac{7}{2})$	

7 of 22

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$\begin{array}{ccc} \Delta 13 \ \text{(d)} \ \text{(ii)} & \tau = \frac{2\pi}{n} \& n = 2 \\ & from (i) \\ & \vdots & \tau = \pi \text{ seconds} \\ \text{(iii)} & \text{Noting } o \leq \sin^2 t \leq 1, \text{ then} \end{array}$	v correct answer	then since $3^{P} = 7^{Q}$, we have two prime factor decompositions for the positive integer N, which is impossible. Hence, up have a contradiction.	V for attempting proof by contradiction & eliminating
$3 \le x = 4$ with centre of motion obviously $x = 3.5$. Initially, $x = 3$ (left extremity of interval & since $T = TT$,	N for process	ALTERNATIVE: FROM $3^{\prime} = 7^{\circ}$ $\Rightarrow 3(3^{\rho-1}) = 7^{\circ}$ $\Rightarrow 3 = 7^{\circ}$	logarithm '
particle completes leycle, i.e., travels twice the path length. Hence, total distance travelled is 2 cm. Question It:	ALCIEBRAIL METHODS AVAILABLE	=> 3/7 Consequence of Enclid's hemma Howeve 3/7 & so we have a controdiction. Mence,	hou
(a) Suppose, to the contrary, $\log_{3}7 = \frac{P}{q}$; $(P, q) = 1$. $\Rightarrow 3^{P/q} = 7$ or equivalently	P\$9, co-prime dof [™] of a logarithm	our supposition is false; namely, $\log_2 7$ is not rational (b) $(1 - 2\lambda_j - k) \cdot ((1 - \lambda_k) + (\lambda_i + 2j - k))$ = $(2 - 2\lambda_j - k) \cdot ((1 + \lambda)i + 2j + (-\lambda - 1)k)$	V-foc
3 = 7 As log 7 > log 3 = 1, then p, q EN. The Fundamental Theory of Arithmetic states that the	log is an increasing -	Since the result is 6, we have: (1+2) - 42 + (2+1) = 6 = 7 2 - 22 = 6 or 2 = -2 (c) Basis Step: When $2=5$ (2.1) = 10	solution with one erter only W for Correct solution
prime-factor decomposition is UNIQUE for any positive integer greater than 1. If N = 3°, i.e., if N = 3×3××3; NEN as ptimes the integers closed under mult ² .		$ \begin{array}{rcl} & & = 3628\ 800 \\ & & = 3628\ 800 \\ & & = 3628\ 800 \\ & & = (120)^{2} \times 4^{4} \\ & = (120)^{2} \times 256 \\ & = 3686\ 400 \\ & & \\ Clearly\ 3628\ 800 \ll 3686\ 400 \end{array} $	V-for basis step - calculation MUST be shocon

8 of 22

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Tor / sauce - 5 (22 + 20)	OILL CO Cont. INDUCTIVE STEP Additional (2n)! < $(n!)^{2} \times t^{n-1}$ for Dome $n = k$; $k \in \mathbb{N} \setminus \{1, 2, 3, 4\}$. Honce $P(K)$: $(2K)! < (k!)^{2} \times t^{k-1}$ When $n = k+1$, (2(k+1))! = (2k+2)! $= (2k+2)(2k+1)(2k)(2k-1)\cdots 3\cdot 2\cdot 1$ $= (2k+2)(2k+1)\cdot (2k)!$ $< (2k+2)(2k+1)\cdot (k!)^{2} \cdot 4^{k-1}$ $< (2k+2)(2k+2)\cdot (k!)^{2} \cdot 4^{k-1}$ $= 4[(k+1)!]^{2} \cdot (k!)^{2} \cdot 4^{k-1}$ $= 4[(k+1)!]^{2} \cdot (k!)^{2} \cdot 4^{k-1}$ $= ((k+1)!)^{2} \cdot 4^{k}$ Hence, $P(K) \Longrightarrow P(K+1)$ As $P(1)$ is frue, conclude theot $(2n)! < (n!)^{2} \times 4^{n-1}$ $\forall n \in \mathbb{N} \setminus \{1, 2, 3, 4\}$ by incluction (d) (i) Equation of Line AB given by $r = a + \lambda (b-a)$ $re. r = (1-\lambda)g + \lambda b; \lambda \in \mathbb{R}$ If D Lies on AB, then we should be able to find a value for λ such that $r = \frac{1}{5}(3g+2b)$	Inductive Step Step Step Step Step Step Step Step Solution Using inductive hypothesis 2k+1 < 2k+2 k < 1 < 2 k < 1 < 2 k < 1 < 2 \sqrt{for} minor logic errors and /or omissions \sqrt{state} $TH < attempt simplify P(kn) \sqrt{h} = 2\sqrt{h} = 2$	That is: $\frac{3}{5} + \frac{2}{5} = (1-\lambda)a + \lambda b$ Clearly, $\lambda = \frac{2}{5}$ works. (i) $\overline{OD} = a + \frac{2}{5}(k-a)$ b-a measures the length of AB. $\lambda = 0$ corresponds to the point A. $\beta = 1$ corresponds to the point B. $:0 < \lambda < $ corresponds to points in the interval "AB" measured from A to B. As $\frac{2}{5} < \frac{1}{2}$, D is closer to A, noting $\lambda = \gamma_2$ would correspond to the midpoint M of "AB". ALTEENATIVE: b - a can be construed as the verter from A to B. Consequently, $a + \frac{1}{2}(k-a)$ would give the midpoint of AB. As $\frac{2}{5} < \frac{1}{2}$, then the point D, with position vector $OD = a + \frac{2}{5}(b-a)$ would be closer to A sthan B.	Corresponding scalar eq'nor $1-\lambda = \frac{3}{5}$ are consistent for coherent argument

9 of 22

Suggested Solution (s) Comments Q14(e)(i) $3^{n} = (as \theta)^{n}$ $= (as \theta)^{n} = (as \theta)^{-n}$ $= (as \theta)^{n} = (as \theta)^{-n}$ By de Moivre's theorem : sin ODD = con 0 + i bun 0. = con (-n) 0 + isin (-n) 0 LO EVEN $\frac{1}{3} - \frac{1}{3} = (\cos n\theta + i \sin n\theta) - (\cos n\theta - i \sin n\theta)$ V connect i.e., 3n-3n = 2isint, as required. solution (ii) $\left(3 - \frac{1}{3}\right)^{5} = 3^{5} - 53^{4} \left(\frac{1}{3}\right) + 103^{3} \left(\frac{1}{3}\right)^{2} - 103^{2} \left(\frac{1}{3}\right)^{3} + 53 \left(\frac{1}{3}\right)^{4} - \left(\frac{1}{3}\right)^{5}$ $= 3^{5} - 53^{3} + 103 - 103^{-1} + 53^{-3} - 3^{-5}$ V Expands $= \left(3^{5} - 3^{-5}\right) - 5\left(3^{3} - 3^{-3}\right) + 10\left(3^{-3^{-1}}\right)$ correctly $(3-\frac{1}{3})^{5} = 2i \sin 5\theta - 5 \times 2i \sin 3\theta + 10 \times 2i \sin \theta \dots (I)$ On the other hand, $(3-\frac{1}{3})^5 = (2isin \partial)^5 \circ R 32i sin^5 \partial ... (II) expansion$ The Conjugate Equating (I) #(II) 32:5 Am 50 = 2: sin 50 - 10: sin 30 + 20: sin 0 $i^{5}=i$ => 32 sin 50 = 2 sin 50 - 10 sin 30 + 20 sin 0 or equivalently, succession $4in^{5}\theta = \frac{1}{16} \sin 5\theta - \frac{5}{16} \sin 3\theta + \frac{5}{8} \sin \theta$ Hence, a=1/16, b=-5/16 & c=5/8. orrest value for a ble

10 of 22

Suggested Solution (s) Comments Quastion 15 (a) $|L\vec{N}| = |L\vec{M} + M\vec{N}|$ LM = 0(1) MN = b = |a+b| V for correct expression $|L_N|^2 = |a+b|^2$ a=a.a $|b|^2 = b \cdot b$ $= (a+b) \cdot (a+b)$ 1212+22. b + 1212 using properties of dot product + N By construction LM& MN are orthogonal & so a. b =0 : $|LN|^{2} = |Q|^{2} + |b|^{2}$, i.e., $|LN|^{2} = |LM|^{2} + |MN|^{2}$, argamen as required (b) For $\int x^2 \sqrt{1-x^2} dx$, let $x = 4in\theta$, i.e., $\theta = 4in'(x)$. Then dn = cos D dD & the integral becomes :- $\int \sin^2 \theta \cdot \sqrt{1 - \sin^2 \theta} \cdot \cos \theta \cdot d\theta = \int \sin^2 \theta \cdot \cos^2 \theta \, d\theta$ onei soln $=\frac{1}{4}\left(24m\partial\cdot\omega\sigma\partial\right)^{2}d\partial\sigma\sigma\frac{1}{4}\int\sin^{2}2\partial\sigmad\sigma; \sin^{2}\theta=\frac{1}{2}\left(1-\omega\partial\theta\right)$ N substa $=\frac{1}{8}\left((1-\cos 4\theta)d\theta\right)$ $=\frac{1}{8}\left(\theta-\frac{\sin 4\theta}{4}\right)+C$ $= \frac{1}{8} \left(\theta - \frac{2\sin 2\theta \cdot \cos 2\theta}{4} \right) + C$ $=\frac{1}{8}\left(\theta - \frac{4\sin\theta\cos\theta}{4}\left(1 - 2\sin^2\theta\right) + C\right)$ (sind = n $un \partial = \sqrt{1-x^2}$ $= \frac{1}{8} \left(\sin^{2}(x) - \chi \cdot \sqrt{1 - \chi^{2}} \cdot (1 - 2\chi^{2}) + C \right)$ $\delta m^{-1}(x) + \sqrt{1-x^{2}}(2x^{3}-x) + C$, as required.

11 of 22

12 of 22 Question 15 cc) (ii) VERSION 1: From $1 < x_1 < x_2 < \dots < x_n$ with $x_i \in \mathbb{N}$ with x_i not recessarily equal to x:+1, we note: $\begin{array}{c} \varkappa_{1} \geq 2 \\ \varkappa_{2} \geq 3 \\ \vdots \\ \varkappa_{n} \geq n+1 \end{array} \right) \begin{array}{c} \vdots \\ 1 \\ \vdots \\ \varkappa_{n} \leq n+1 \end{array} \right) \begin{array}{c} \vdots \\ 1 \\ \vdots \\ \varkappa_{n} \leq n+1 \end{array} \right) \begin{array}{c} \vdots \\ 1 \\ \vdots \\ \varkappa_{n} \leq n+1 \end{array}$ WV for argument 1 for basic progress In particular : $\frac{1}{\chi_1^2} + \frac{1}{\chi_2^2} + \dots + \frac{1}{\chi_{n-1}^2} = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2 + \dots + \left(\frac{1}{n}\right)^2.$ $\int_{0}^{n-1} \sum_{i=1}^{n-1} \left(\frac{1}{x_{i}}\right)^{2} \leq \sum_{i=2}^{n} \left(\frac{1}{i}\right)^{2}; \text{ Let } k+1=i \implies \sum_{i=2}^{n} \left(\frac{1}{i}\right)^{2} = \sum_{k=1}^{n-1} \frac{1}{(k+1)^{2}}$ $\therefore \sum_{i=1}^{n-1} \left(\frac{1}{x_i}\right)^2 \leqslant \sum_{k=1}^{n-1} \frac{1}{(k+1)^2}$ $<\sum_{k=1}^{n-1}\frac{1}{k(k+1)}$ using (i) $\sum_{i=1}^{n-1} \left(\frac{1}{a_i}\right)^2 < 1 - \frac{1}{n}; n \in \mathbb{N}$ $= \sum_{k=1}^{n-1} \left(\frac{1}{k} - \frac{1}{k} \right)$ $= 1 - \frac{1}{2} + \frac{1}{2}$ < 1, as required. $\frac{1}{2} - \frac{1}{3} +$ Question 15(c) (i) VERSION 1 $\frac{1}{(k+1)^2} < \frac{1}{k(k+1)}$ V for conject 1 - 1 n-2 n-1 argument <>> K(k+1) < (k+1)²; KEN $\begin{array}{l} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ $\frac{1}{N-1} - \frac{1}{2}$ $| - \frac{1}{2}$ $\frac{1}{k+1} < \frac{1}{k}$ $\frac{1}{(k+1)^2} <$ -k(k+1) 05-1 >0

13 of 22 Question 15 (c) (ii) $\frac{1}{(k_{\rm H})^2} < \frac{1}{k(k_{\rm H})} \text{ or equivalently } \frac{1}{k^2} < \frac{1}{(k_{\rm H})k}$ VERSION 2: We have $= \frac{1}{k-1} - \frac{1}{k}.$ $= \frac{1}{K} - \frac{1}{K}$ $\int_{\mathcal{O}} \frac{1}{\chi_1^2} < \frac{1}{\chi_1 - 1} - \frac{1}{\chi_1} \quad \text{Now} \quad \chi_1 > 1 \implies \chi_1 - 1 \ge 1$ $\Rightarrow \frac{1}{\chi - 1} \leq 1^{*}$ $\leq \left| -\frac{1}{2l} \right|$ 8 $\frac{1}{\chi_2^2} < \frac{1}{\chi_{-1}} - \frac{1}{\chi_2}$ with $\chi_2 > \chi_1 = \chi_2 - 1 \ge \chi_1$ $\leq \frac{1}{\chi_1} - \frac{1}{\chi_2}$ $\frac{1}{\chi_{i}^{2}} < \frac{1}{\chi_{i}-1} - \frac{1}{\chi_{i}} \text{ with } \chi_{i} > \chi_{i} = 2\chi_{i} - 1 = 2\chi_{i-1}$ $= \frac{1}{2; -1} \leq \frac{1}{2; -1}$ $\leq \frac{1}{\chi_{i-1}} - \frac{1}{\chi_{i}}$ $\frac{1}{\chi_{1}^{2}} + \frac{1}{\chi_{2}^{2}} + \frac{1}{\chi_{3}^{2}} + \frac{1}{\chi_{3}^{2}} + \dots + \frac{1}{\chi_{n-1}^{2}} < \left(1 - \frac{1}{\lambda_{1}}\right) + \left(\frac{1}{\lambda_{1}} - \frac{1}{\chi_{2}}\right) + \left(\frac{1}{\chi_{2}} - \frac{1}{\chi_{3}}\right) + \dots + \left(\frac{1}{\chi_{n-2}} - \frac{1}{\chi_{n-1}}\right)$ VIV for angument W for substantial fragress V for basic fragress $= 1 - \frac{1}{\chi_{n-1}}$ <) as $n_{n-1} > 1$; i.e., $n_{n-1} \in \mathbb{N} \setminus \{i\}$ × We have $\frac{1}{\chi_1^2} < \frac{1}{\chi_1^{-1}} - \frac{1}{\chi_1} \implies \frac{1}{\chi_1^{-2}} < 1 - \frac{1}{\chi_1}$ $\leq \left| -\frac{1}{\chi_{1}} \right|$ $\frac{1}{\chi_{i}^{2}} \leq \frac{1}{\chi_{i-1}^{-1}} - \frac{1}{\chi_{i}} \gg \frac{1}{\chi_{i-1}^{2}} < \frac{1}{\chi_{i-1}^{2}} - \frac{1}{\chi_{i}}$ $\leq \frac{1}{\chi_{i-1}^{2}} - \frac{1}{\chi_{i}} \gg \frac{1}{\chi_{i-1}^{2}} < \frac{1}{\chi_{i-1}^{2}} - \frac{1}{\chi_{i}}$ & in general :

Suggested Solution (s) Comments Question 15 (d) (i) Taking the positive sense of all finky2 vector quantities in the direction of motion, i.e., vertically downwords, we can apply Newton?s 2ND Law as follows: $m\ddot{\chi} = mg - mkv^2$ (gravitational constant) $m\ddot{\chi} = mg - mkv^2$ (gravitational constant) $\Rightarrow \ddot{z} = q - kv^2$ $\Rightarrow \sqrt{dv} = g - kv^2$ $\Rightarrow \left(\frac{\sqrt{dv}}{q - kv^2} \right) = \int dx$ Variables Separable Approach $\implies \frac{1}{2k} \left(\frac{-2kv}{q-kv^2} - \int dx \right)$ $\left(\frac{f(a)}{c(a)}da\right)$ $\Rightarrow -\frac{1}{2k} \ln \left| q - k v^2 \right| = x + C$ $= \ln |f(z)| + ($ 2c=0 when v=0 => C = - 1/2 m(q) 2 Consequently, $\mathcal{H} = \frac{1}{2k} \ln(q) - \frac{1}{2k} \ln\left(q - kv^2\right)$ $\ln\left(\frac{q}{L}\right) =$ $\chi = \frac{1}{2k} \ln \left(\frac{g}{-ky^2} \right)$ DR n(a) - ln(b)(ii) Firstly, we recognize that terminal velocity is achieved when $\ddot{x} = 0 \implies g - kv^2 = 0$ ALTERNATIVE SOLUTION AVALLARIE - $\Rightarrow Y = \sqrt{\frac{9}{4}} & \text{ for } \mathcal{U} = \sqrt{\frac{9}{4}}$ EE SUPPLEMENT ... Continued Over

14 of 22

2021 Year 12 Mathematics Extension 2 Task 4 SOLUTIONS

15 0 22

16 of 22

Suggested Solution (s)	Comments
Question 16 (a)(i) Consider the horizontal direction firstly.	
se = -0.1 se or equivalently dv = -0.1v	
$\implies \int \frac{dv}{v} = -0.1 \int dt$	Variables Separable
$\implies h(v) = -0.1t + C & (v = u when$	Approach
$\therefore \ln\left(\frac{v}{u}\right) = -0.1t \qquad \begin{cases} t = 0 \\ \Rightarrow c = \ln(u) \end{cases}$	\swarrow
\Rightarrow $v = ue^{-o \cdot lt}$	process
$S_{o}\int \frac{dx}{dt} = \int u e^{-0.1t} dt \Rightarrow x = -10u e^{-0.1t} f x = 0 \text{ when}$	V progress
$\therefore x = 10u - 10ue^{-0.1t}$	
$x(t) = 10u(1 - e^{-0.1t})$, as required.	
Now consider the vertical direction.	
$\ddot{y} = -g - 0.1 \dot{y} \Rightarrow \frac{dv}{dt} = -g - 0.1 v$	
$= \int \frac{dv}{g + a I v} = -\int dt$	Variables Separable
$\implies 10\int \frac{0.1 dv}{g + 0.1 v} = -\int dt$	Approach
$\implies 10 \ln (g + 0.1v) = -t + c_2 & t = 0 \\ \implies c_1 = 0 n(a)$	
: $10 \ln (g + 0.1v) = -t + 10 \ln (g)$	
/ Continued Over	

VIRILE AGITUR

2021 Year 12 Mathematics Extension 2 Task 4 SOLUTIONS

Suggested Solution (s)	Comments
Q16 Cont (a)()Cont	<u> </u>
$10 \ln (g + 0.1v) = -t + 10 \ln (g)$	
$\implies 10 \ln (g + 0.1v) - 10 \ln (g) = -t$	J.J.
\implies 10 ln $\left(\frac{g+o\cdot lv}{g}\right) = -t$	correct
$\implies \ln\left(\frac{9+0.1V}{9}\right) = -0.1t$	for y(t);
$\Rightarrow \underline{g+0.lv} = e^{-0.lt}$	W-for
$\implies 0.1v = g\left(e^{-0.1t}-1\right)$	substantial progress;
$V = \log(e^{-0.1t}) \text{ or equivalently } \frac{dy}{dt} = \log(e^{-0.1t})$	V for basic progress
Therefore $\int \frac{dy}{dt} dt = \int log(e^{-0.1t}l) dt$ $\Rightarrow V = I O a (-10 e^{-0.1t}l) + c l f when t = 0$	Alt ernhtive Soluttons Avail able
$= 109(102 - t)^{-3}$	
So $y = 10g(-10e^{-0.1t} t) + 100g$	
$i \cdot e \cdot y(t) = 100g(1 - e^{-0.1t}) - 10gt$, as required.	

17 of 22

Suggested Solution (s) **Comments** Alle Cont (a) (ii) $jc(t) = Ue^{-0.1t}...(I); \quad \dot{y}(t) = 100(e^{-0.1t}-1)...(II)$ q=10m/5 We have $x(t) = 10u(1-e^{-0.1t})...(I)$ $y(t) = 1000(1-e^{-0.1t}) - 100t$ VERSION 1: Package hits the ground when oc = 4000 VIV-for \Rightarrow 4000 = 10u (1-e^{-0.1t}) $\implies \frac{400}{11} = 1 - e^{-0.1t}$ Solution $\Rightarrow e^{-0.1t} = \frac{u-400}{u} \dots (x)$ At impact $\tan(45^\circ) = \left|\frac{9}{7}\right|$ or equivalently $\tan(-45^\circ) = \frac{9}{7}$ 45 to the $\Rightarrow 1 = \frac{100(1 - e^{-0.1t})}{11e^{-0.1t}} \text{ or } -1 = \frac{100(e^{-0.1t})}{21e^{-0.1t}} \text{ (VI)}$ HORIZONTAL ż ly Substituting (I) into (II) : (A+ impact) $| = \frac{100 \left(1 - \frac{u - 400}{u}\right)}{u \left(\frac{u - 400}{u}\right)} \implies | = \frac{100 \times 400 / u}{u \left(u - 400\right) / u}$ W-for minorerror UMIGGIONS $\Rightarrow u(u-400) = 40000$ $= 11^2 - 400u - 40000 = 0$ $u = \left\{ 400 \pm \sqrt{(400)^2 + 4(40000)} \right\} / 2$ =7 andatic Formula = $\left\{ 400 \pm \sqrt{2 \times (400)^2} \right/ 2$ / basic i.e. u = 200 ± 200 √2. However, u >0 So $u = 200 + 200\sqrt{2}$ only. Substituting this equation progress ives $e^{-0.1t} = \frac{200 + 200\sqrt{2} - 400}{200 + 200\sqrt{2}} = \frac{200(\sqrt{2}-1)}{200(\sqrt{2}+1)} \text{ or } \frac{\sqrt{2}-1}{\sqrt{2}+1}$ words (I) gives So e0.1t = VI+1 or 3+2VZ $\Rightarrow t = 10 \ln (3 + 2\sqrt{2}) \approx 17.6 \text{ s} (17.627471...)$

18 of 22

Suggested Solution (s) **Comments** Question 16 (a) (ii) VERSION 2: As he love use have $\begin{aligned} \dot{x}(t) &= Ue^{-0.1t} &; \quad (\dot{y}(t) = 100 (e^{-0.1t})) \\ x(t) &= 10u (1 - e^{-0.1t}) &; \quad (\dot{y}(t) = 1000 (1 - e^{-0.1t}) - 100t) \end{aligned}$ for correct idution $4000 = 10 \text{ m} (1 - e^{-0.1t}) (x(t) = 4000)$ Also, z(t) = - i(t) at impact (Angle relative to horizontal is 45°) $:: | = \frac{100(1 - e^{-0.1t})}{11e^{-0.1t}}$ missions => Ue^{-0.1t} = 100 (1-e^{-0.1t}) ... (2) From $4000 = 10u (1 - e^{-0.1t}) \implies u = \frac{400}{1 - e^{-0.1t}} \dots (B)$ V for basic progress Substituting (B) into (a) gives $\frac{400}{1-e^{-0.1t}} \cdot e^{-0.1t} = 100(1-e^{-0.1t})$ $\Leftrightarrow \frac{4e^{-0.1t}}{1e^{-0.1t}} = 1 - e^{-0.1t}$ $4e^{0.1t} = (e^{0.1t} - 1)^2$ $(e^{0.1t})^2 - 6e^{0.1t} + 1 = 0$ $\iff e^{0.1t} = \frac{6 \pm \sqrt{32}}{2} \text{ or } 3 \pm 2\sqrt{2}$ Qualitic Formule \neq $t = 10 \ln(3 \pm 2\sqrt{2})$ However t = 0 (physical constraint) & so we reject t = 10 ln (3 - 2)2). Hence t = 10-ln (3+2)2 ⇒ t ≈ 17.6 s as before (t= 17.627 471...

19 8 22

20 of 22

Suggested Solution (s) Comments Question 16(b) a2+b2=c2 (Pythagoras' Theorem) $\Rightarrow (a^2 + b^2)c = c^3 \text{ or } a^2c + b^2c = c^3$ for acqume : a < c & b < c } Consequently $a^3 + b^3 < a^2c + b^2c$: $a^3 < a^2c & b^3 < b^2c$ (Adding Inequalities) ALTERNIATIVE SOLUTIONS: VERSION 1 We have $a^2+b^2=c^2$ (Rythagoras' Theorem) Let us assume $a^3 + b^3 < c^3$ or equivalently $a^3 + b^3 < (a^2 + b^2)^{\frac{3}{2}}$ $\iff (a^3 \pm b^3)^2 < (a^2 \pm b^2)^3$ $\iff a^{6} + 2a^{3}b^{3} + b^{6} < a^{6} + 3a^{4}b^{2} + 3a^{2}b^{4} + b^{6}$ $2a^{3}b^{3} < 3a^{4}b^{2} + 3a^{2}b^{4}$ $2ab < 3a^2 + 3b^2$; $ab \neq 0$ \Leftrightarrow $0 < 2a^{2} + 2b^{2} + (a - b)^{2}$ which is true \Leftrightarrow as x >0 Yx E IR 1803 and certainly for x >0 VERSION Z: We note that $a^4b^2 + a^2b^4 = (a^2b)^2 + (ab^2)^2 - 2a^2b \cdot ab^2 + 2a^2b \cdot ab^2$ $= (a^{2}b - ab^{2})^{2} + 2a^{3}b^{3}$ i.e. $a^{4}b^{2} + a^{2}b^{4} \ge 2a^{3}b^{3}as (a^{2}b - ab^{2})^{2} \ge 0 \quad \forall a, b \in \mathbb{R} \dots \mathbb{I}$ Also $(a^2+b^2)^3 = a^6+3a^4b^2+3a^2b^4+b^6$ $> a^{6} + a^{4}b^{2} + a^{2}b^{4} + b^{6}$ $\geq a^6 + 2a^3b^3 + b^6$ using (I) $= (a^3 + b^3)^2$ So $(a^2+b^2)^3 > (a^3+b^3)^2$. However, $a^2+b^2=c^2$ $(c^2)^3 > (a^3 + b^3)^2$ $\Rightarrow (c^3)^2 > (a^3+b^3)^2 (> 0)$ \Leftrightarrow c³ > a³+b³, as required.

Suggested Solution (s) Comments Question 16 (c) (i), For $I_{2n+1} = \int_{0}^{2n+1} e^{x^2} dx$, let $\begin{cases} u = x^{2n} \Rightarrow du = 2nx^{2n-1} dx \\ dv = xe^{x^2} dx \Rightarrow v = \frac{1}{2}e^{x^2} \end{cases}$ $\sqrt{}$ Correct Solution Then $I_{2n+1} = \frac{1}{2} x^{2n} e^{x^2} - n \int x^{2n-1} e^{x^2} dx$ V progres = e - n. I 2n-1, as required in attemption to use (ii) $2\int x^{2n-1} (1+x^2) e^{x^2} dx = 2\int (x^{2n-1} e^{x^2} + x^{2n+1} e^{x^2}) dx$ integration by parts = $2(I_{2n-1} + I_{2n+1})$ Imark = 2 $(I_{2n-1} + \frac{e}{2} - n I_{2n-1})$ using Reduction Formula from(i) For $f(x) = x^{2n-1}e^{x^2}$; f is increasing on IR and, in particular, on x E [o, 1]. Justification: $f'(x) = e^{x^2} (2n-1)x^{2n-2} + 2x \cdot e^{x} x^{2n-1}$ $= e^{x^{2}} ((2n-1) \cdot x^{2n-2} + 2x^{2n})$ $= x^{2n-2} e^{x^2} (x^2 + 2n - 1)$ $\geq e^{x}(x^2+1)$ as $n \in \mathbb{N}$ Also f(0) = 0; $f(1) = e \implies I_{2n-1} > 0$ (properties of integrals) AVAILABLE $n \ I_{2n-1} \geqslant I_{2n-1}; n \in \mathbb{N}.$ Homro. $: 2(I_{2n-1} + \frac{e}{2} - nI_{2n-1}) \leq 2(nI_{2n-1} + \frac{e}{2} - nI_{2n-1})$ = 2. e ore. Hence, $2\int_{\infty}^{2n-1}(1+x^2)e^{x^2}dx \leq e$, as required.

21 0 22

Quastrom (b (c) (ii)
DTHERMAGE APPROVEN: On EO, 1,
$$\chi^{2n-1}(1+\pi^2)e^{\frac{1}{n}} \ge 0$$
 with gradet lower
bound = 0 & least where bound = 1. The lub or supremum is achieved when
 $\chi = 1$. So $2\int_{\pi}^{1} \frac{1}{2^{n-1}}(1+\pi^2)e^{\frac{1}{n}}dn \ge 0$, noting glb or infimum
 $\chi = 1$. So $2\int_{\pi}^{1} \frac{1}{2^{n-1}}(1+\pi^2)e^{\frac{1}{n}}dn \le 2\int_{\pi}^{2n-1}(1+1^2)e^{\frac{1}{n}}dn$
 $= 4e\int_{\pi}^{1} \frac{1}{2^{n-1}}dn$
 $= 4e\int_{\pi}^{1} \frac{1}{2^{n-1}}dn$
 $= 4e\int_{\pi}^{1} \frac{1}{2^{n-1}}dn$
 $= 4e\int_{\pi}^{1} \frac{1}{2^{n-1}}dn$
 $= \frac{2e}{n}$
 $\chi = when \frac{2}{n} \le 1$, i.e., $n \ge 2$ line N.
It only replaind the show $2\int_{\pi}^{1} x(1+\chi^2)e^{\frac{1}{n}}dn \le e$ which is
aquivalent to showing $\int_{\pi}^{1} 2xe^{\frac{1}{n}}d1 + \int_{\pi}^{1} \frac{1}{2xe^{\frac{1}{n}}}dn \le e$.
New $\int_{\pi}^{1} 2ne^{\frac{1}{n}}dn = e^{\frac{1}{n}}\int_{0}^{1} \& \int_{\pi}^{1} \frac{1}{2(2xe^{\frac{1}{n}})}dn \le xe^{\frac{1}{n}}\int_{\pi}^{1} \frac{1}{2xe^{\frac{1}{n}}}dn \le e$.
Here $\int_{\pi}^{1} x(1+\chi^2)e^{\frac{1}{n}}dn \le e$.
Here $\int_{\pi}^{1} x(1+\chi^2)e^{\frac{1}{n}}dn \le e$.
Here $\int_{\pi}^{1} x(1+\chi^2)e^{\frac{1}{n}}dn = (e-1) + e - (e-1)$
 $= e$
Thus, $2\int_{0}^{1} x^{2n-1}(1+\chi^2)e^{\frac{1}{n}}dn \le e$ $\forall n \in N$.

<u>Supplement – Alternative Solutions</u> 2021 Mathematics Extension 2 Task 4 Trial Paper

Question 11 (d) (ii)

Sample Answer:

$$z^{7} - 1 = 0$$

 $(z - 1)(z^{6} + z^{5} + z^{4} + z^{3} + z^{2} + z + 1) = 0$
 $z^{6} + z^{5} + z^{4} + z^{3} + z^{2} + z + 1 = 0$ (1)
 $\frac{z^{6} + z^{5} + z^{4} + z^{3} + z^{2} + z + 1}{z^{3}} = \frac{0}{z^{3}}$
 $z^{3} + z^{2} + z + 1 + \frac{1}{z} + \frac{1}{z^{2}} + \frac{1}{z^{3}} = 0$
 $(z^{3} + \frac{1}{z^{3}}) + (z^{2} + \frac{1}{z^{2}}) + (z + \frac{1}{z}) + 1 = 0$
since $z^{3} + \frac{1}{z^{3}} = 2\cos 3\theta$, $z^{2} + \frac{1}{z^{2}} = 2\cos 2\theta$ and $z + \frac{1}{z} = 2\cos \theta$
 $\Rightarrow 2\cos 3\theta + 2\cos 2\theta + 2\cos \theta + 1 = 0$ (2)

The solutions of (1) are the non-real seventh roots of unity, so $\theta = \pm \frac{2\pi}{7}, \pm \frac{4\pi}{7}, \pm \frac{6\pi}{7}$

 $\therefore \text{ Since (1) and (2) are equivalent then } \frac{2\pi}{7}, \frac{4\pi}{7} \text{ and } \frac{6\pi}{7} \text{ are also solutions to (2).}$ Let $\theta = \frac{2\pi}{7}$ in (ii): $\therefore 2\cos 3\left(\frac{2\pi}{7}\right) + 2\cos 2\left(\frac{2\pi}{7}\right) + 2\cos \left(\frac{2\pi}{7}\right) + 1 = 0$ $2\left(\cos\left(\frac{6\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right)\right) = -1$ $\cos\left(\frac{6\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) = -\frac{1}{2}$

$\underline{Supplement-Alternative\ Solutions}$ 2021 Mathematics Extension 2 Task 4 Trial Paper

15 (d) (ii) (3 marks) Outcomes Assessed: M1.3/MEX12-6 Targeted Performance Bands: E3-E4

Criteria	
Provides correct solution	3
• Finds $t = \frac{1}{2\sqrt{kg}} \ln \left \frac{\sqrt{g} + \sqrt{kv}}{\sqrt{g} - \sqrt{kv}} \right $	2
Correctly separates the variables	1
OR	
• Finds $\frac{dt}{dv} = \frac{1}{g - kv^2}$	

Sample Answer: Relation between *v* and *t* :

$$\frac{dv}{dt} = g - kv^{2}$$

$$\sqrt{k}dt = \frac{\sqrt{k}dv}{g - (\sqrt{k}v)^{2}}$$

$$\sqrt{k}dt = \left\{\frac{1}{\sqrt{g} - \sqrt{k}v} + \frac{1}{\sqrt{g} + \sqrt{k}v}\right\} \frac{\sqrt{k}dv}{2\sqrt{g}}$$

$$\frac{1}{g - kv^{2}} = \frac{1}{(\sqrt{g} - \sqrt{k}v)(\sqrt{g} + \sqrt{k}v)}$$

$$\frac{1}{(\sqrt{g} - \sqrt{k}v)(\sqrt{g} + \sqrt{k}v)} = \frac{A}{(\sqrt{g} - \sqrt{k}v)} + \frac{B}{(\sqrt{g} - \sqrt{k}v)}$$

$$\frac{1}{(\sqrt{g} - \sqrt{k}v)(\sqrt{g} + \sqrt{k}v)} = \frac{A}{(\sqrt{g} - \sqrt{k}v)} + \frac{B}{(\sqrt{g} - \sqrt{k}v)}$$

$$\frac{1}{(\sqrt{g} - \sqrt{k}v)(\sqrt{g} + \sqrt{k}v)} = \frac{A}{(\sqrt{g} - \sqrt{k}v)} + \frac{B}{(\sqrt{g} - \sqrt{k}v)}$$

$$\frac{1}{(\sqrt{g} - \sqrt{k}v)(\sqrt{g} + \sqrt{k}v)} = \frac{A}{(\sqrt{g} - \sqrt{k}v)} + \frac{B}{(\sqrt{g} - \sqrt{k}v)}$$

$$v = A(\sqrt{g} + \sqrt{k}v) + B(\sqrt{g} - \sqrt{k}v)$$

$$v = \frac{\sqrt{g}}{\sqrt{k}}, \quad 1 = 2A\sqrt{g} \implies A = \frac{1}{2\sqrt{g}}$$

$$v = -\frac{\sqrt{g}}{\sqrt{k}}, \quad 1 = 2B\sqrt{g} \implies B = \frac{1}{2\sqrt{g}}$$

$$\frac{v}{g - kv^{2}} = \frac{1}{2\sqrt{g}(\sqrt{g} - \sqrt{k}v)} + \frac{1}{2\sqrt{g}(\sqrt{g} + \sqrt{k}v)}$$

<u>Supplement – Alternative Solutions</u> 2021 Mathematics Extension 2 Task 4 Trial Paper

Alternatively:

$$\begin{aligned} \frac{dv}{dt} &= g - kv^2 \\ \frac{dt}{dt} &= \frac{1}{g - kv^2} \\ \frac{dx}{dv} &= \frac{v}{g - kv^2} \\ t &= \frac{1}{2\sqrt{g}} \int_{0}^{\frac{U}{2}} \left(\frac{1}{\sqrt{g} - \sqrt{kv}} + \frac{1}{\sqrt{g} + \sqrt{kv}} \right) dv \\ &= \frac{1}{2\sqrt{kg}} \left[-\ln\left|\sqrt{g} - \sqrt{kv}\right| + \ln\left|\sqrt{g} + \sqrt{kv}\right| \right] \\ \frac{1}{g - kv^2} &= \frac{1}{\left(\sqrt{g} - \sqrt{kv}\right)\left(\sqrt{g} + \sqrt{kv}\right)} \\ \frac{1}{\left(\sqrt{g} - \sqrt{kv}\right)\left(\sqrt{g} + \sqrt{kv}\right)} &= \frac{A}{\left(\sqrt{g} - \sqrt{kv}\right)} + \frac{B}{\left(\sqrt{g} + \sqrt{kv}\right)} \\ v &= A\left(\sqrt{g} + \sqrt{kv}\right) + B\left(\sqrt{g} - \sqrt{kv}\right) \\ v &= A\left(\sqrt{g} + \sqrt{kv}\right) + B\left(\sqrt{g} - \sqrt{kv}\right) \\ v &= \frac{\sqrt{g}}{\sqrt{k}}, \quad 1 = 2A\sqrt{g} \quad \Rightarrow A = \frac{1}{2\sqrt{g}} \\ v &= -\frac{\sqrt{g}}{\sqrt{k}}, \quad 1 = 2B\sqrt{g} \quad \Rightarrow B = \frac{1}{2\sqrt{g}} \\ \frac{v}{g - kv^2} &= \frac{1}{2\sqrt{g}\left(\sqrt{g} - \sqrt{kv}\right)} + \frac{1}{2\sqrt{g}\left(\sqrt{g} + \sqrt{kv}\right)} \\ &= \frac{1}{2\sqrt{kg}} \ln\left|\frac{2\sqrt{g} + U\sqrt{k}}{2\sqrt{g} - U\sqrt{k}}\right| \end{aligned}$$

At terminal velocity:

$$0 = g - kU^{2} \Rightarrow \sqrt{k} = \frac{\sqrt{g}}{U}$$

$$\therefore t = \frac{1}{2\sqrt{g}\left(\frac{\sqrt{g}}{U}\right)} \ln \left| \frac{2\sqrt{g} + U\frac{\sqrt{g}}{U}}{2\sqrt{g} - U\frac{\sqrt{g}}{U}} \right|$$
$$= \frac{U}{2g} \ln \frac{3\sqrt{g}}{\sqrt{g}}$$
$$= \frac{U}{2g} \ln 3.$$